
Travel times in an urban traffic environment often are subject to
dynamic and stochastic variations due to random fluctuations in travel
demands, frequent interruptions of traffic controls, and unpredictable
occurrences of traffic incidents. Although these variations inevitably
affect the real-life performance of a paratransit system, they have not
been taken into account in the routing and scheduling process by most
existing paratransit scheduling systems. The potential effects of these
variations on the operational characteristics of a paratransit system such
as vehicle productivity and schedule reliability are examined. A dial-a-
ride routing and scheduling system capable of modeling dynamic and
stochastic travel times was used in the analysis. A series of numerical
experiments was performed on a practical problem from the city of
Edmonton, Alberta, under hypothetical travel time variation patterns. It
was found that both dynamic and stochastic variations in travel times
had important effects on the quality of the schedules, and an appropri-
ate consideration of these variations in the scheduling process could sub-
stantially improve the reliability and productivity of the schedules.

The potential for improving the productivity and reliability of dial-
a-ride paratransit, also called demand responsive transit, has signif-
icantly increased in recent years because of the latest advances in
information technologies such as automated vehicle location sys-
tems (AVL), digital communications, and computers (1–3). The
applications of these technologies in transportation engineering,
broadly labeled as intelligent transportation systems (ITS), will
make a large amount of real-time data, such as current vehicle loca-
tions, traffic conditions, and customer requests, available for use in
the paratransit management and operation process. It is expected
that the effective use of these data in the design of paratransit ser-
vices will yield more productive and more reliable routes and sched-
ules. However, most existing computerized paratransit scheduling
systems have not yet integrated the functionality required to take
advantage of this increased data availability (4,5). The intention of
this report is to take the application of one of these kinds of data—
travel times—as an example to illustrate the importance of adequate
data use and the need for improved scheduling systems.

In a dial-a-ride paratransit system, the major role of a scheduling
system is to determine the pickup and drop-off routes and times for a
fleet of vehicles carrying customers between specified origins and
destinations. The underlying problem is referred to as the “dial-a-ride
problem” (DARP). To model and solve the DARP, the essential infor-
mation needed includes the travel times between origin locations and
destinations (or O-D travel times). Because of the limitation in data
availability and computation processing ability, the DARP histori-
cally has been modeled in a static and deterministic manner in the
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sense that O-D travel times are assumed to be constants. In an urban
traffic environment, however, O-D travel times may be highly time
dependent (or dynamic) and stochastic because of the random fluctu-
ations of travel demands, frequent interruptions of traffic controls, and
unpredictable occurrences of traffic incidents. It can be expected that,
in situations of high uncertainty, the service vehicles may not be able
to follow the established schedules based on the traditional models,
and thus a reliable service may not be guaranteed. For example, on the
basis of the assumption of deterministic O-D travel times, it would be
feasible to schedule a vehicle to drop off a customer at the destination
at the most desired drop-off time. However, the actual drop-off time
will not be exactly the scheduled drop-off time because of the ran-
domness of the vehicle’s travel time. The most obvious drawback
associated with the assumption of constant O-D travel times is that it
may result in erroneous and inefficient schedules. Although all these
problems are theoretically true, issues such as what the actual conse-
quences of these variations would be, what factors would influence
the schedules, have yet to be addressed. Therefore, the objective of
this report is to investigate whether there are meaningful differences
between considering and not considering the dynamic and stochastic
variations in travel times in the performance of schedules created by
a routing and scheduling system.

METHODOLOGY

Problem Statement and Overview

The DARP is defined to construct a set of feasible and efficient
routes and schedules to satisfy transportation requests (trips) made
by the system clients. A trip specifies the number of persons of each
specific type to be transported, a pick-up location and a drop-off
location, and the desired pick-up or drop-off time or both. Two types
of clients are considered: the ambulatory, who can use regular seats,
and clients who must remain seated in wheelchairs. A fleet of vehi-
cles that can accommodate these seating requirements is available
to operate the routes. The travel time between any locations (or O-
D travel time) in the service area is given or can be calculated on the
basis of other available information such as location coordinates,
average travel speed, and road networks. The dwell times at pickup
and drop-off locations for each trip are known. It should be noted
that these dwell times can be incorporated easily into the O-D travel
time and therefore will be considered as part of the O-D travel time
without further clarification.

The DARP can be classified further into two types: the static
DARP, which needs to be solved at the beginning of every opera-
tional day with all the trip requests known in advance (for example,
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booked 1 day in advance, or subscribed for regular service), and the
real-timeDARP, in which the objective is to determine the assign-
ment of new trips into the existing schedules of vehicles in real time.
This study deals only with the static DARP.

The DARP commonly is formulated to minimize a general objec-
tive function (or cost function) with a set of service quality con-
straints (6,7). In this paper, the cost function is defined as a weighted
sum of the total client inconvenience (or disutility), as measured in
terms of excess ride time(the difference between the scheduled ride
time and the ride time without diversions for other customers) and
service time deviation(the difference between the scheduled pickup
and drop-off times and their most desired pickup and drop-off
times), and the cost to the service providers, as measured in terms
of the total vehicle travel time and the number of vehicles used.

The service quality constraints specify that the ride time of each
client must be less than a maximum allowable ride time and that all
clients must be picked up (dropped off) after (before) their most
desired pickup (drop-off) times with service time deviations less
than a maximum allowable value. Note that the latter defines a time
interval, or service time window, during which the service must take
place, as shown in Figure 1(a).

When the O-D travel times are modeled as random variables, the
cost function and service constraints need to be redefined. Com-
pared to a deterministic model, the main difference in modeling is
the use of probabilistic service time windows, as illustrated in Fig-
ure 1(b). In the probabilistic model, the service time constraint spec-
ifies that the probability of the arrival time within the desired time
window must be greater than a prespecified threshold value called
minimum reliability. For example, if a minimum reliability of 90
percent is used in scheduling, all clients must be scheduled to be
picked up or dropped off during their service time windows with at
least a 90 percent chance. More detailed descriptions on the model-
ing methodology can be found elsewhere (8,9).

Several variations of the DARP can be defined on the basis of how
O-D travel times are modeled (8). As shown in Figure 2(a), the con-
stant O-D time model (DARP-C) assumes that the travel time be-
tween each O-D pair is deterministic and independent of the time of
day. In the DARP-S, O-D travel times are modeled as random, but
time-independent, variables [Figure 2(b)]. The third class of the
DARP, DARP-D, assumes that the O-D travel times are dynamic,
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that is, time-dependent but not stochastic, as shown in Figure 2(c).
When the travel times are modeled as both dynamic and stochastic,
as shown in Figure 2(d), the result is the last class of problems—
DARP-DS. Note that the problem DARP-DS is the most general
model among all the classes, and thus a solution algorithm to solve
the DARP-DS also can be used to solve other classes of the DARP.
The following section presents an overview of the solution proce-
dure used to solve the DARP-DS.

Solution Method

Since the early 1970s, several computer algorithms and programs
have been developed to solve the DARP (6,10–12). However, one of
the major disadvantages of these algorithms is that they are based
on the assumption of constant O-D travel times and thus essentially
are applicable to the DARP-C. Recently, the author developed a new
routing and scheduling system called FirstWin that allows the
dynamic and stochastic nature of the origin-destination (O-D) travel
times to be modeled explicitly (13). This system will be used in the
following analysis to solve the various versions of the DARP dis-
cussed previously. This section briefly discusses the algorithm
included in FirstWin to solve the DARP-DS. A more detailed
description of the FirstWin software is provided by Fu and Teply (8).

It is well known that the DARP is computationally intractable,
and only heuristic algorithms are feasible to solve its real-life
instances. One of the most widely used heuristic routing and sched-
uling procedures is called the insertion algorithm (10). The algo-
rithm processes customer trips sequentially and attempts to insert
one trip at a time into the available vehicles. This algorithm has been
modified to solve the DARP-DS with a new objective function and
a set of probabilistic constraints. The modified insertion algorithm
has the following procedure:

1. Determine the pickup and drop-off time windows for all trips
based on their desired service times, the maximum allowable ser-
vice time deviation, and the maximum allowable ride time.

2. Select the trip i 5 1 from the trip list.
3. Select the vehicle k 5 1 from the fleet.
4. Examine all possible ways in which trip i can be inserted into

the partial route of vehicle k and find the insertion that results in a
minimum insertion cost (or objective function value). For each
insertion, the feasibility of the route after the insertion is first veri-
fied, ensuring that the vehicle’s capacity is not exceeded at each stop
along the route, that all clients are picked up or dropped off within
their service time windows at a probability greater than the mini-
mum reliability, and that the mean ride time of each trip is less than
the maximum allowable ride time. An optimal schedule for the new
route then is determined by using an algorithm similar to the one
presented by Dumas et al. (14). Note that the dynamic characteris-
tics of the travel times impose a need to update both the means and
the variances of the travel times between stops and of the arrival
times at individual stops after each insertion. It is assumed that the
O-D travel times are independent and normally distributed with
known mean and variance. Consequently, the estimation of the
arrival time variances at individual stops on a given route can be
determined readily. If all vehicles are examined, then go to the next
step; otherwise, select the next vehicle k 1 1 and repeat this step.

5. If it is not feasible to assign trip i to any vehicle, then set trip i
as a “leftover” trip. Otherwise, assign trip i to vehicle k*, for which
the insertion cost is minimal among all the vehicles.

FIGURE 1 Service time window for client specifying desired
pickup time: deterministic versus probabilistic models.



If all requests are scheduled, then the scheduling process is com-
pleted; otherwise, select the next trip i 1 1 and go to step 3.

Evaluation Approach

To evaluate the potential benefits of considering the dynamic and
stochastic variations in O-D travel times, this report concentrates on
identifying the difference in the performance of the schedules gen-
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erated by using the previously described algorithm under different
travel time models. The performance of schedules is measured by
using the following statistics that are either generated by the sched-
uling system or obtained through an after-process analysis:

• Total travel time: total duration of all routes excluding the slack
time (in hours);

• Vehicle productivity: total number of trips divided by the total
travel time (in trips/hour);

FIGURE 2 Schematic illustration of O-D travel time models.



• Number of vehicles: number of vehicles scheduled to service
all the trips;

• Average ride time: total ride times of the trips divided by the
total number of trips (in min);

• Average service time deviation: total service time deviations of
the trips divided by the total number of trips (in min);

• Percentage of violated trips: percentage of trips that will not be
picked up or dropped off during their service time windows at a
given minimum reliability.

EXPERIMENTAL STUDY

A case study was conducted to examine the difference in the sched-
uling results between considering and not considering the dynamic
and stochastic variations of the O-D travel times. The analysis was
performed on a real-life instance of the DARP problem, consisting
of a weekday morning peak service (7:00 a.m. to 9:00 a.m.) covered
by the Disabled Adult Transportation System (DATS) in the city 
of Edmonton, Alberta, in 1998. The instance includes 463 trips, of
which 75 percent were wheelchair trips and the rest were ambulato-
ries. The original trip database did not include the dwell time
required at each trip stop; therefore a dwell time of 1 min was added
to each pickup and drop-off stop.

A fleet of 60 vehicles was available to provide the service for the
morning peak period; the characteristics of these vehicles are sum-
marized in Table 1.

The origin and destination locations of the trips were spread over
515 physical zones covering the municipal area of Edmonton. An
asymmetric matrix containing the average travel time during the
morning peak period between all the zones was available. This matrix
is used as a basis for creating several assumed travel time variation
patterns during the morning peak period. Further details along with
the computational results are reported in the following section.

It is assumed that the routing and scheduling objective was to
minimize the expected total travel time. A maximum ride time of 90
min and a maximum service time deviation of 30 min were used in
scheduling to avoid excessive inconvenience to clients.

Effects of Stochastic Variations of Travel Times

For analyzing the impact of the stochastic variations of travel times,
two O-D travel time scenarios were considered. As shown in Figure
3, scenario S-1 represents the “true” O-D travel time pattern in the
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service area, in which the stochastic variations in travel times are
modeled by assuming that the travel times between all O-D pairs 
are independent, normally distributed random variables. The mean
travel time for each O-D pair was set to be the same as the average
morning peak travel time, given by the original O-D travel time
matrix. Because no data are available for use to estimate the true
variances of the O-D travel times, it was assumed that the variance
to mean ratios (defined as the variance of travel time divided by
mean travel time) for all O-D pairs were the same and known. As a
result, a matrix containing the variances of travel times between all
zones could be calculated by multiplying the mean travel times with
the variance to mean ratio. It should be noted that the variance to
mean ratio is different from the more commonly used term coeffi-
cient of variation(defined as the ratio of standard deviation to
mean). The variance to mean ratio appears to be more likely to be
constant than the coefficient of variation in a given road network,
and therefore it was selected for use (15,16). Similar to the coeffi-
cient of variation, this ratio also reflects the relative variability of
travel times in a road network. In the following analysis, variance to
mean ratios of 10 sec and 20 sec are used to represent two different
levels of travel time variability. Note that the coefficients of varia-
tion corresponding to these two ratios are 0.07 and 0.11, respec-
tively, for a trip of 30 min.

Scenario S-0 represents a simplified model of the “true” O-D travel
time pattern as represented by S-1. The stochastic variation of 
travel time is ignored and the travel time between each O-D pair is
assumed to be equal to the mean travel time used in S-1. Thus, the
original O-D travel time matrix can be used for this scenario.

The morning peak trips in the case problem described previously
were first scheduled by using FirstWin with constant travel time
(S-0). The travel times between stops and arrival times at individual
stops on the obtained schedules were updated by using the stochas-
tic travel times (S-1). The service time constraints subsequently
were verified against the probabilistic conditions at a given mini-
mum reliability. The numbers of trips that violated time windows
were then determined. Figure 4 shows the percentage of violated
trips as a function of the minimum reliability under the two assumed
levels of travel time variability. It can be observed that the sched-
ules generated without considering the stochastic variations of travel
times (S-0) have a serious reliability problem, even when the varia-
tion of travel times is low, as represented by a variance to mean ratio

TABLE 1 Characteristics of Available Vehicles

FIGURE 3 O-D travel time scenarios for analyzing effects of
stochastic variations in travel times.



of 10 sec. For example, approximately 30 percent of trips could not
be picked up or dropped off during their desired time windows with
a probability of 30 percent (corresponding to the 70 percent mini-
mum reliability level) or higher. The percentage increases to 50 if
the assumed minimum reliability is 90 percent. Figure 5 shows that
the number of violated trips increases as the variability of travel
times increases; nevertheless, the amount of the increase is rela-
tively small compared to the absolute value. This implies that the
negative consequences in reliability would be similar at a wide
range of travel time variability levels.

If the service reliability is explicitly considered in the scheduling
process, the reliability of schedules can then be controlled directly
and the percentage of trips with violated time windows can be effec-
tively reduced. Table 2 presents the scheduling statistics based on
scenario S-1 with minimum reliabilities of 50 percent, 70 percent,
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and 90 percent under the two assumed variance to mean ratios. Note
that scenario S-1 with a minimum reliability of 50 percent is essen-
tially the same as the deterministic case, i.e., scenario S-0. The use
of minimum reliability in the scheduling process, although improv-
ing the reliability of the schedules, would cause increased total
travel time and reduced productivity, as shown in Table 2. As would
be expected, the impact becomes more pronounced as the variabil-
ity of travel times and the minimum required reliability increase. For
example, in the high variability case, the application of a minimum
reliability of 90 percent results in a 12.5 percent decline in the vehi-
cle productivity and a 23.4 percent increase in the number of vehi-
cles required.

Table 2 also shows that the rate of decrease in vehicle productiv-
ity increases as the minimum reliability increases at both variability
levels. The reductions in vehicle productivity caused by the increase

FIGURE 4 Relationship between percentage of violated trips in schedules
generated without considering stochastic variations of travel times and minimum
reliability under two assumed travel time variability levels.

FIGURE 5 O-D travel time scenarios for analyzing effects of dynamic
variations in travel times.



of the minimum reliability from 70 percent to 90 percent are more
than twice as much as those from 50 percent to 70 percent. The
implication of this result is that one should be cautious in using high
reliability levels in the scheduling process because it may cause a
significant amount of decrease in vehicle productivity.

As it would be expected, applying the minimum reliability crite-
ria in the scheduling process yields schedules with improved qual-
ity of service, as indicated by lower average ride time and service
time deviation. It is also interesting to observe that the decrease in
the productivity and the increase in the number of vehicles required
are much less significant in the situation in which the travel time
variability is not very high and a moderate level of reliability is
required. For example, the application of a minimum reliability
of 70 percent results in a 2.1 percent decrease in the vehicle pro-
ductivity and a 6.4 percent increase in the number of vehicles.

Finally, it should be noted that although these findings were
obtained by considering the variability of travel time, they should be
equally valid for the impact of the variability of dwell time.

Effects of Dynamic Variations of Travel Times

The impact of the dynamic variations of travel times on the reliabil-
ity of schedules is investigated by using the O-D travel time scenar-
ios D-0, D-1, and D-2, as illustrated in Figure 5. Scenarios D-1 and
D-2 exemplify the “true” O-D travel time patterns, in which
dynamic variations of travel time are explicitly considered. The sce-
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nario D-1 represents the situations with a relatively smooth tempo-
ral variation, and D-2 represents the situations with a relatively
peaked temporal variation. Both scenarios are assumed to be peaked
at the time interval from 7:30 to 8:30 with peak travel time for each
O-D pair equal to the average morning peak travel times for the O-
D pair. The travel times for other time intervals are lowered, fol-
lowing the scales shown in Figure 5.

Scenario D-0 represents the simplified model of the true O-D
travel time pattern as represented by D-1 and D-2. The travel times
between all O-D pairs are assumed to be time independent, and thus
the dynamic variations are ignored. The travel time between each O-
D pair is assumed to be the same as the travel time during the peak
time interval in scenario D-1 and D-2 (from 7:30 to 8:30, as shown
in Figure 5), and therefore it is given by the original O-D travel time
matrix. This assumption reflects the conservative approach that
would be taken by most schedulers in the situations in which a sin-
gle O-D travel time is to be used.

Table 3 lists the scheduling statistics under those O-D travel time
scenarios. As would be expected, the generated routes are less pro-
ductive with the static travel time case, because the travel times
used in this case are larger than the true travel times, as represented
by D-1 and D-2. Three additional vehicles are scheduled as com-
pared to scenario D-1, and seven additional vehicles as compared
to scenario D-2.

To reveal the problem caused by not considering the dynamic
variation of travel times, schedules obtained by using the static O-
D travel time (D-0) are recalculated with the assumed true O-D

TABLE 2 Summary of Solutions with Stochastic Travel Times



travel times as represented by D-1 or D-2. Schedule performance
statistics, such as the total vehicle hours, the vehicle productivity,
and the percentage of violated trips at three violation levels, are then
determined. Table 4 gives these statistics under the true O-D travel
time scenarios.

It can be observed from Table 4 that ignoring the dynamic pattern
of travel times would result in routes with a significant number of
trips that would not be served within their desired service time win-
dows. In scenario D-2, 35 percent of the trips would violate their ser-
vice time windows by more than 5 min. When the O-D peaking is
smoother, as seen in scenario D-1, only 14 percent of trips would
violate their service time windows by more than 5 min. The prob-
lem is also revealed in the maximum time violation of the desired
service time windows: 39 min in the case of peaked temporal vari-
ation and 19 min in the case of smooth temporal variation.

Apart from the reliability problem, ignoring the dynamic travel
time pattern in scheduling would result in inferior schedules in terms
of vehicle productivity. For example, the vehicle productivity will
increase approximately 23 percent (from 4.55 to 4.70) if scenario D-
1, representing the true dynamic pattern, is used in the scheduling
process.

CONCLUSIONS

A series of numerical experiments was performed on a real-life
paratransit scheduling problem under several hypothetical travel
time variation models. The intent was to examine the potential
effects of travel time variations on the quality of service and pro-
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ductivity of a paratransit system. A paratransit vehicle routing and
scheduling system capable of solving the DARP with various O-D
travel time models was used in the experiments. The following find-
ings were obtained:

1. Routing and scheduling without considering the stochastic
variations of travel times would yield schedules with a high per-
centage of trips that may not be picked up or dropped off during their
desired time windows.

2. Explicit consideration of the variability of travel times could
effectively improve the reliability of the schedules generated by the
scheduling process. However, the improvement in reliability would
also result in decreased productivity and increased number of vehi-
cles required. The decline in system productivity is marginal when
the travel time variability is low (e.g., with a variance to mean ratio
of less than 20 sec in the presented case) and the required reliability
is moderate (e.g., around 70 percent).

3. The study clearly shows that there are several serious negative
consequences from ignoring the dynamic variation of O-D travel
times in the scheduling process, including declined vehicle produc-
tivity, increased number of vehicles required, and high percentage
of trips that may not be served during their desired time windows.
These negative effects suggest the possible gains if the true dynamic
variation can be taken into account in the scheduling process.

4. The implied benefits of considering the dynamic and stochas-
tic variations of travel times in the scheduling process are increased
customer satisfaction and reduced system operating cost.

Finally, it should be noted that these results were obtained from
the analysis of a specific case with hypothesized O-D travel time
variation patterns and therefore preclude definite generalizations.
Nevertheless, they offer a meaningful illustration of the issues that
paratransit service providers should consider, while suggesting the
need for further research. Future research will involve investigations
on more extensive cases with more realistic system settings and O-
D travel time data. Another important research direction is to inves-
tigate the potential of using real-time data, such as current vehicle
locations and probe travel times, to improve the productivity and
reliability of a paratransit system.
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